Projects

Reducing energy use and material loss by better control of agglomeration during spray drying

This project aims to improve agglomeration control in industrial spray dryers, which can reduce energy use and off-spec powder production in the powder production chain.

The project investigates scaling-relations to steer sticky behavior and particle agglomeration in spray drying processes. This research contributes to meet the Dutch climate agreements to reduce greenhouse emissions and to meet increasing strict fine dust emission regulations for industrial drying systems.

spray dried powder
spray dried powder

Complexity of agglomeration dynamics

Agglomeration in spray dryers has major influence on critical application properties, such as bulk density, flowability, and reconstitution behaviour. Agglomeration during spray drying occurs when a partially-dried droplet collides with another partially-dried droplet or with a fully-dried (agglomerate) particle. There is a complex relationship between drying of droplets and agglomeration dynamics. The period, which starts with generation and exposure of a droplet to high inlet air temperature (resulting in extreme drying rates) and ends with collision with another partially-dried droplet or fully dried (agglomerate) particle is crucial for steering the agglomeration process.

In industrial practice, agglomeration is optimised by adapting the position and/or angle of (usually) high pressure nozzles, air flow pattern and presence of fines return to obtain agglomerated powder of desired quality. This approach is trial-and-error based and needs to be continuously repeated for different spray drying systems and products. Moreover, lack of control of agglomeration negatively impacts operation efficiency of spray dryers (e.g. due to fouling and lower production capacities) and leads to significant material losses (in the form of off-spec product) during large scale production. It is estimated that for the Netherlands, annually 0.9-1.5 PJ energy or 200-300 kton CO2 eq emission may be reduced by improving agglomeration control in spray dryers. Moreover, improved agglomeration control will contribute to reduction of fine dust emission from dryers, for which increasingly strict regulations are reinforced by the government.

steering spray dynamics
steering spray dynamics

Steering sticky behaviour and agglomeration

This project therefore aims at developing scaling-relations to steer sticky behaviour and agglomeration in spray drying. We develop these by:

1) studying drying kinetics, evolution of sticky surface properties and binary particle collisions at the single droplet scale and

2) investigating sticky zones and agglomeration behaviour in well-defined spray drying systems to move away from current empirical approaches. Translation of critical parameters obtained in single droplet drying studies will lead to recommendations for process conditions in spray drying, e.g. nozzle positions and angles, airflow and temperature.

Grant provider

This project is co-funded by TKI-Energy with the supplementary grant 'TKI- Toeslag' for Topconsortia for Knowledge and Innovation (TKI’s) of the Ministry of Economic Affairs and Climate Policy.

Sustainable development goals

This project contributes to the UN Sustainable Development Goals.

Project partners

Joining the Institute for Sustainable Process Technology means access to knowledge, people and education to support you to be great at what you do. Do you wish to receive more information, are you interested in one of our projects, or maybe you have a great idea to share? Complete the form below and we will be in touch soon.