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Abstract: Plasma catalysis has recently gained traction as an alternative to ammonia synthesis.
The current research is mostly fundamental and little attention has been given to the technical
and economic feasibility of plasma-catalytic ammonia synthesis. In this study, the feasibility of
plasma-catalytic ammonia is assessed for small-scale ammonia synthesis. A brief summary of the state
of the art of plasma catalysis is provided as well as a targets and potential avenues for improvement
in the conversion to ammonia, ammonia separation and a higher energy efficiency. A best-case
scenario is provided for plasma-catalytic ammonia synthesis and this is compared to the Haber-Bosch
ammonia process operated with a synthesis loop. An ammonia outlet concentration of at least
1.0 mol. % is required to limit the recycle size and to allow for efficient product separation. From the
analysis, it follows that plasma-catalytic ammonia synthesis cannot compete with the conventional
process even in the best-case scenario. Plasma catalysis potentially has a fast response to intermittent
renewable electricity, although low pressure absorbent-enhanced Haber-Bosch processes are also
expected to have fast responses to load variations. Low-temperature thermochemical ammonia
synthesis is expected to be a more feasible alternative to intermittent decentralized ammonia synthesis
than plasma-catalytic ammonia synthesis due to its superior energy efficiency.
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1. Introduction

Renewable wind energy and solar power increasingly penetrate the electrical power grid, spurring
the electrification of the energy landscape [1]. However, as these energy sources are intermittent, energy
storage is required. A wide range of technology is available, including batteries and thermo-mechanical
storage for short-term energy storage, typically up to a few days [2]. Chemical energy storage and
pumped hydropower are the main alternatives for seasonal energy storage [2–4]. Even though pumped
hydropower is a potential solution for low-cost energy storage in naturally suited areas [4], the energy
density of such systems is low, and pumped hydropower heavily depends on the availability of large
natural water formations.

Chemical energy storage in the form of hydrogen or hydrogen carriers has been proposed to
solve the intermittency challenge. Renewable hydrogen is produced from water via electrolysis using
renewable electricity, producing oxygen as a by-product. Hydrogen can be combusted to water in a
fuel cell or in a gas turbine, producing electricity again. However, hydrogen is not easily stored on the
long-term. Therefore, hydrogen carriers are required and ammonia (NH3) is one of the options [3,5].
Ammonia is currently mainly produced for fertilizer applications [6–8]. However, ammonia may be a
hydrogen carrier in the circular economy [5,9,10]. In this case, intermittent renewables such as solar,
tidal and wind power are coupled with chemical plants to produce ammonia.
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Currently, ammonia is mainly produced with the Haber-Bosch process, continuously operated
at high temperature and pressure, i.e., 400–500 ◦C and 100–300 bar [6–8,11]. The high temperature
is required to activate the stable N≡N triple bond over the industrial catalyst, and a high pressure is
required to shift the equilibrium to ammonia. Typically, Haber-Bosch plants have high production
capacities of up to 3300 t-NH3 d−1, with a potential increase to 5000–6000 t-NH3 d−1 in the near
future [12,13]. This corresponds to a few gigawatt (GW) in the case of an electricity-driven Haber-Bosch
plant. Such electrolysis-based Haber-Bosch plants operate at an energy cost of about 26–40 GJ t-NH3

−1,
depending on the electrolysis technology used [14]. About 95% of this energy is required for the
hydrogen production and the remaining part is required for nitrogen purification and ammonia
synthesis. The theoretical minimum energy input for ammonia synthesis from air and water is
21.3 GJ t-NH3

−1 [7].
Upon scaling down the Haber-Bosch process, the energy losses increase and the energy

consumption for ammonia synthesis increases (see Figure 1). Down to the 1–10 microwave (MW)
scale (equivalent to 3–30 t-NH3 d−1), energy losses are limited and the energy consumption for
ammonia synthesis is about 36–40 GJ t-NH3

−1 [15]. However, upon further scaling down, energy losses
become increasingly severe, and using alternative technologies becomes attractive. Non-conventional
technologies typically cannot compete with Haber-Bosch at large-scale, due to the high energy efficiency
of Haber-Bosch. However, alternative technologies operating under milder conditions can be beneficial
for small-scale production. This is important for intermittent operation required in the case of rapid
variation in the availability of solar and wind power. Small-scale ammonia synthesis may be relevant
for energy storage, specifically for isolated small communities.
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Figure 1. Energy consumption of electrolysis-based Haber-Bosch processes as function of ammonia
production capacity. Adapted and modified from [16]. Original references [17–26]. One microwave
(MW) corresponds to approximately 100 kg h−1 ammonia.

1.1. State of the Art of Plasma-Catalytic Ammonia Synthesis

Plasma catalysis has recently gained attention for electrification of chemical processes and for
energy storage applications [27–31], and for ammonia synthesis in specific [32–34]. Plasma is the fourth
state of matter, in which electrons, ions, molecules, radicals, and excited species exist in a quasi-neutral
state. In case of thermal plasmas, electrons and heavier species have the same temperature. On the
other hand, non-thermal plasmas, the electron temperature is significantly higher than that of heavier
ions and neutral species. Non-thermal plasmas can be coupled with a catalyst. Excited species
generated in the plasma (for instance, vibrationally activated nitrogen, N2(v)) can have an enhanced
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adsorption rate as compared to ground-state molecules. As N2 dissociation is usually the bottleneck
for ammonia synthesis, plasma activation of N2 may generate a synergistic effect with the catalyst.

Plasma catalysis potentially has a fast response to intermittent renewable electricity, although low
pressure absorbent-enhanced Haber-Bosch processes are also expected to have fast responses to load
variations. In the upcoming section, the state of the art of the electrolysis-based Haber-Bosch process
and an alternative plasma-catalytic process are discussed. This serves as a starting point for process
evaluation of plasma-catalytic ammonia synthesis.

An overview of reported energy consumptions for ammonia synthesis in various types of plasma
reactors is shown in Figure 2. Among the plasma reactors, dielectric barrier discharge (DBD) reactors
have been studied most extensively since the 2000s [32,33,35]. Microwave (MW) and radiofrequency (RF)
plasmas have been studied in the 1980s–1990s, although recently a few articles have been published on
this subject as well [33]. Glow discharges, inspired by the commercial Birkeland-Eyde process for NOX

production in the early 20th century, have been studied in the 1920s–1990s [32,33]. Other technologies,
such as arc discharges and plasma jets have only been reported in a few studies, mostly with an
exploratory character [33,36]. Various authors have discussed plasma reactors extensively [27,32,37].
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1.2. Comparison of the Small-Scale Haber-Bosch Processes and State-of-the-Art Plasma Catalysis

Figure 3 shows a comparison of reported state-of-the-art data on energy consumption of the
electrolysis-based Haber-Bosch process, both at the 10 kW and 10 MW scale, as well as plasma-catalytic
ammonia synthesis. Electrolysis-based hydrogen production is required for both the Haber-Bosch
process and plasma catalysis at an energy consumption of about 31.4 GJ t-NH3

−1 [16,66]. Nitrogen is
purified for all alternatives via pressure swing adsorption at an energy consumption of about 1.0 GJ
t-NH3 [16]. At the 10 MW scale, the high pressure ammonia synthesis loop of the Haber-Bosch process
has a limited energy loss and consumes about 3.6 GJ t-NH−1 [67]. However, at 10 kW, the energy
consumption of the high pressure ammonia synthesis loop is as high as 45–50 GJ t-NH3

−1 (see Figure 3).
This is mainly due to large heat losses from the synthesis reactor operating at high temperatures.
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and plasma catalysis. For the Haber-Bosch process, estimates are based on reported energy consumption
in Figure 1. For plasma catalysis, the energy consumption for gas recycling and ammonia separation
is based on estimates in for low pressure, low conversion systems with solid sorbents as reported
in [16,67]. The energy consumption for plasma catalysis is based on data from Kim et al. [43] over a
Ru-MgO/γ-Al2O3 catalyst at 0.2% conversion. The energy cost for recycling and separation with solid
sorbents is discussed in Section 3.1. Technology readiness level (TRL). The TRL levels here apply for
the complete system. TRL 1 is the basic idea, while TRL 9 is a commercial system. For more details,
see ref. [68].

As shown in Figure 3, the state-of-the-art system for a plasma-catalytic ammonia synthesis process
has a considerably higher energy consumption than the electrolysis-based Haber-Bosch process, both at
10 kW and at 10 MW. Plasma catalysis allows for operation at milder conditions than conventional
catalysis over the industrial iron catalyst. However, plasma catalysis is only beneficial when the
energy consumption of a plasma-catalytic ammonia synthesis process is at least equal to the energy
consumption of the electrolysis-based Haber-Bosch process at 10 kW (about 80 GJ t-NH3

−1). The best
reported value for plasma catalysis is 95 GJ t-NH3

−1 at 0.2 mol. % NH3 [43], while most reported values
vary in the range between 103 and 106 GJ t-NH3

−1 at various conversion levels (see Figure 2) [33].
Furthermore, the energy consumption of recycling of unconverted N2 and H2 for the best reported
plasma-catalytic systems is high, due to the low conversion levels (see Figure 2). The recycling cost is
usually not reported for plasma catalysis (like in Figure 2), but is significant in case of low conversions
to ammonia, i.e., below 1.0 mol. % NH3 [67].

1.2.1. Targets and Strategies for More Energy-Efficient Plasma-Catalytic Ammonia Synthesis

It is estimated that plasma catalysis may be competitive with the Haber-Bosch at a target total
energy consumption of 80 GJ tNH3

−1, based on the comparison with electrolysis-based Haber-Bosch
process at 10 kW, equivalent to about ~10 kg t-NH3 day−1 production.

The energy costs of hydrogen production and nitrogen purification is the same for both processes
and amount to about 32 GJ t-NH3

−1. Ammonia separation in the Haber-Bosch process is achieved by
condensation. However, under mild pressure (<70 bar), condensation is not feasible due to the high
vapor pressure of ammonia under ambient conditions (about 7 bar) [16,67]. Therefore, sorbents are
currently being developed for ammonia separation and storage, as discussed in Section 3.1. Typically,
the energy consumption for ammonia separation with sorbents is about 10 GJ t-NH3

−1, which changes
little with ammonia concentration.

This implies that two functionalities primarily determine the feasibility of plasma-catalytic
ammonia synthesis, namely (1) plasma catalysis, and (2) separation of NH3 and recycling of unconverted
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N2 and H2. In principle, the recycle cost is usually not an issue for industrial ammonia synthesis, as the
energy cost of recycling is below 1 GJ t-NH3

−1 at NH3 concentrations above 1.0 mol. % in the reactor
outlet [67]. However, for the current best-reported data for plasma catalysis, the ammonia concentration
is max 0.2% (see Figure 3), implying recycling costs as high as 100 GJ t-NH3

−1. Clearly, increasing
the NH3 concentration in the outlet of the plasma reactor to above 1.0%, at a reasonable energy
cost, is desirable. Another benefit of increasing the conversion level and consequently the ammonia
concentration is the reduction in capital investment for recycling, due to the smaller compressor. In the
upcoming section, potential improvements for plasma catalysis are discussed.

2. Plasma Reactor and Catalyst Improvements to Plasma-Catalytic Ammonia Synthesis

The plasma reactor forms the core of the plasma-catalytic ammonia synthesis process. In this
section, the plasma reactor types are evaluated, as well as the necessary coupling with a catalyst.

2.1. Plasma Reactor Type

The first choice to make is the plasma reactor type. While dielectric barrier discharge (DBD)
reactors and glow discharge reactors operate at atmospheric pressure (or elevated pressures [69]),
microwave (MW) reactors and radiofrequency (RF) reactors operate at sub-atmospheric pressures.
In principle, operating at atmospheric pressures is beneficial, as vacuum conditions require expensive
equipment and large volumes. Furthermore, separation of ammonia is difficult at low partial pressures.

Metrics to evaluate the plasma reactor type is the energy consumption for ammonia formation
(requirement about 40 GJ t-NH3

−1, see Figure 3), as well as the conversion (requirement ≥ 1.0 mol.
% NH3). As shown in Figure 2, no data in the literature have attained this so far. It should be noted
that the data shown in Figure 2 vary widely in temperature, pressure, H2:N2 ratio, and catalyst choice.
However, the apparent general trend is that the energy consumption for ammonia formation is lowest
in dielectric barrier discharge reactors. Other reactor types (glow discharges, microwave reactors,
and radiofrequency reactors) have an energy consumption of one to four orders of magnitude higher.
This may be attributed to the more effective plasma-catalyst coupling for a DBD reactor. Therefore,
a dielectric barrier discharge reactor is the preferred plasma reactor type, with the current knowledge.

Plasma Optimization

Plasma optimization should be focused on maximizing the density of mildly activated molecular
nitrogen species (N2(v) or N2(e)), rather than radical species, as the mildly activated molecular nitrogen
species require less energy input than fully dissociated nitrogen radicals. Mild activation of N2 to N2(v)
or N2(e) can primarily be achieved by a relatively low specific input energy (SIE). Upon increasing
the SIE, the reduced electric field increases, thereby increasing the fraction of N2 dissociated in the
plasma [27]. Furthermore, N2-rich feeds are beneficial for activating N2 rather than H2 [43].

Various authors have reported an improved energy efficiency upon using pulsed plasmas in a
dielectric barrier discharge reactor, rather than a continuous AC plasma [43,53]. For AC plasmas,
excited N2 molecules are readily dissociated due to the continuous presence of activated species.
This leads to dissociation and the formation of N radicals, which recombine with other species and
form heat. For pulsed plasmas, less of the activated N2 is dissociated in the plasma due to climbing
along the vibrational ladder [70]. Thus, a pulsed plasma dielectric barrier discharge reactor is preferred
as the plasma reactor.

Further modifications can be made to the plasma properties, by changing the discharge frequency
and the capacitive and discharge regimes. Plasma properties can be modified by the electrode
material [45,54], as well as the dielectric constant in the reactor. Performance enhancement may be
attained upon the physical mixture of the active catalyst with a dielectric material [40], which can be
attributed to a change in electron number density and average energy distribution.
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2.2. Reaction Mechanisms and Catalyst Optimization

Several mechanisms towards ammonia synthesis in the presence of a plasma are being discussed,
as previously reported in [38]. The various mechanisms for N2 activation are shown in Figure 4.
The bond-dissociation energies of N2 and H2 are 945 kJ mol−1 and 436 kJ mol−1 respectively,
which translates to 66.1 GJ t-NH3

−1 at 100% efficient conversion to ammonia via complete dissociation.
This implies that plasma-induced dissociation and subsequent radical reactions can never be sufficiently
energy efficient to attain the required 40 GJ t-NH3

−1 as explained in Section 1.2.1. Thus, a catalyst is
required to aid in the dissociation of the molecules. As shown in Figure 4, the plasma can activate
molecular N2 via vibrational or electronic excitation (denoted as N2

(ex) in Figure 4), which lowers the
barrier for N2 dissociation over the catalyst. Typically, catalysts which are able to dissociate N2 are also
able to dissociate H2, while some mid-late transition metal catalysts such as Pd and Pt can dissociate
H2, but not N2.
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plasma, followed by barrierless adsorption on the metal surface.

2.2.1. Plasma-Catalytic Ammonia Synthesis with Molecular Species

Thus, plasma activation of N2 without complete dissociation is the required pathway for
plasma-catalytic ammonia synthesis with a low energy consumption. Mehta et al. [71] proposed that
plasma-activated molecular N2 can enhance the rate of ammonia formation, which was substantiated
by Rouwenhorst et al. [38] for Ru-based catalysts at a low plasma power input of 83–367 J L−1.
Mehta et al. [71] postulated that the plasma activates the N2, thereby lowering the barrier for N2

dissociation, while subsequent hydrogenation steps are not influenced by the plasma.
Furthermore, Mehta et al. [71] postulated that thermally less active metals can become good

catalysts for converting plasma-activated N2 to ammonia. However, the importance of plasma-activated
molecular N2 (either vibrational or electronic) has been experimentally substantiated exclusively for
Ru-based catalysts [38,72]. It remains an open question whether noble metals can become active for N2

dissociation after vibrational or electronic excitation. Over Ru-based catalysts, the apparent barrier
for N2 dissociation over the catalyst decreases by about 40–70 kJ mol−1 upon plasma activation [38].
The discussion hereafter focuses on Ru-based catalysts, as a mechanism with excited N2 has only been
proven to be possible for this metal. However, the role of the support and alkali promoters should also
be valid for other metals [73].

The support has a profound effect on the ammonia synthesis activity over Ru-catalysts [74].
The ammonia synthesis rate can vary by multiple orders of magnitude, depending on the catalyst
formulation. For Ru catalysts it was found that oxide supports with a low electronegativity show a
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high ammonia synthesis activity for thermal catalysis [75]. A similar trend was confirmed for plasma
catalysis (see Figure 5), suggesting that a pathway via excited molecular N2 is indeed dominant.
The introduction of promoters (alkali metals and alkaline earth metals) can enhance the activity
further [74,76]. The nitrogen dissociation barrier decreases upon the introduction of an alkali metal due
to electrostatic interactions [76]. A similar activity improvement upon the introduction of an alkali metal
was also reported for Co catalysts [77]. For this mechanism, the temperature should be such that N2

dissociation on the catalyst and NH3 desorption from the catalyst are possible. Thus, the temperature
for plasma catalysis cannot be much lower than for thermal catalysis.Catalysts 2020, 10, x FOR PEER REVIEW 7 of 20 

 

  

Figure 5. Ammonia synthesis rate as a function of the electronegativity for plasma-catalytic ammonia 

synthesis. Reproduced from [38]. 

The support has a profound effect on the ammonia synthesis activity over Ru-catalysts [74]. The 

ammonia synthesis rate can vary by multiple orders of magnitude, depending on the catalyst 

formulation. For Ru catalysts it was found that oxide supports with a low electronegativity show a 

high ammonia synthesis activity for thermal catalysis [75]. A similar trend was confirmed for plasma 

catalysis (see Figure 5), suggesting that a pathway via excited molecular N2 is indeed dominant. The 

introduction of promoters (alkali metals and alkaline earth metals) can enhance the activity further 

[74,76]. The nitrogen dissociation barrier decreases upon the introduction of an alkali metal due to 

electrostatic interactions [76]. A similar activity improvement upon the introduction of an alkali metal 

was also reported for Co catalysts [77]. For this mechanism, the temperature should be such that N2 

dissociation on the catalyst and NH3 desorption from the catalyst are possible. Thus, the temperature 

for plasma catalysis cannot be much lower than for thermal catalysis. 

The lowest reported energy requirement for plasma catalysis so far is for a promoted Ru/Al2O3 

catalyst [43]. As listed in Table 1, trends in thermal catalysis indicate that changes in the catalyst may 

facilitate a lower energy cost for NH3 synthesis, given that the right plasma reactor is used. Promoted 

Ru/MgO catalysts are about 25 times more active than promoted Ru/Al2O3 catalysts for thermal 

catalysis [78]. As similar trends are valid for plasma catalysis at low conversions (see Figure 5), an 

increased productivity and a lower energy cost may be attained upon using promoted Ru/MgO 

catalysts. As listed in Table 1, the enhancement for plasma catalysis upon using promoted Ru/MgO 

is less profound at high conversions resulting in relatively high ammonia concentration (1.1–3.7 mol. 

% NH3). 

Table 1. Comparison of activity trends over Ru catalysts for thermal catalysis and for plasma catalysis. 

Thermal catalysis: data of Muhler et al. [78], 385 °C, 1 atm, 40 mL min−1, H2:N2 = 3:1, 138 mg catalyst. 

Plasma catalysis: data of Ruan et al. [79], 180 °C, 60 mL min−1, H2:N2 = 3:1, 1.1-3.7 mol. % NH3. Kim et 

al. [43], 250–300 °C, 1 atm, 1–4 L min−1, H2:N2 = 1:4, 17.1 g catalyst, 0.01–0.16 mol. % NH3. Target value 

for plasma catalysis: 40 GJ t-NH3−1 at 1.0% NH3 at outlet. “Relative act.” refers to the relative ammonia 

synthesis rate on various catalysts, with Ru/Al2O3 as the base-case (1.0). 

Catalyst 
Thermal 

Catalysis 
Plasma Catalysis  

 Muhler et al. [78] 
Ruan et al. 

[79] 
Kim et al. [43]  

 Relative Act. Relative Act. 
Relative 

Act. 
Energy Cost (GJ t-NH3−1) 

    
AC 

Plasma 

Pulsed 

Plasma 

Ru/Al2O3 1.0 1.0 1.0 1029–1800 - 

Figure 5. Ammonia synthesis rate as a function of the electronegativity for plasma-catalytic ammonia
synthesis. Reproduced from [38].

The lowest reported energy requirement for plasma catalysis so far is for a promoted Ru/Al2O3

catalyst [43]. As listed in Table 1, trends in thermal catalysis indicate that changes in the catalyst
may facilitate a lower energy cost for NH3 synthesis, given that the right plasma reactor is used.
Promoted Ru/MgO catalysts are about 25 times more active than promoted Ru/Al2O3 catalysts for
thermal catalysis [78]. As similar trends are valid for plasma catalysis at low conversions (see Figure 5),
an increased productivity and a lower energy cost may be attained upon using promoted Ru/MgO
catalysts. As listed in Table 1, the enhancement for plasma catalysis upon using promoted Ru/MgO is less
profound at high conversions resulting in relatively high ammonia concentration (1.1–3.7 mol. % NH3).

Table 1. Comparison of activity trends over Ru catalysts for thermal catalysis and for plasma catalysis.
Thermal catalysis: data of Muhler et al. [78], 385 ◦C, 1 atm, 40 mL min−1, H2:N2 = 3:1, 138 mg catalyst.
Plasma catalysis: data of Ruan et al. [79], 180 ◦C, 60 mL min−1, H2:N2 = 3:1, 1.1-3.7 mol. % NH3.
Kim et al. [43], 250–300 ◦C, 1 atm, 1–4 L min−1, H2:N2 = 1:4, 17.1 g catalyst, 0.01–0.16 mol. % NH3.
Target value for plasma catalysis: 40 GJ t-NH3

−1 at 1.0% NH3 at outlet. “Relative act.” refers to the
relative ammonia synthesis rate on various catalysts, with Ru/Al2O3 as the base-case (1.0).

Catalyst Thermal Catalysis Plasma Catalysis

Muhler et al. [78] Ruan et al. [79] Kim et al. [43]

Relative Act. Relative Act. Relative Act. Energy Cost (GJ t-NH3−1)

AC Plasma Pulsed Plasma

Ru/Al2O3 1.0 1.0 1.0 1029–1800 -
Ru/Al2O3
promoted 2.5 - 2.8–3.3 313–563 101–141

Ru/MgO 9.2 1.5 - - -
Ru/MgO

promoted 62 3.3 - - -
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2.2.2. Best-Case Scenario for Plasma Catalysis

As shown in Figure 3, the energy costs of the state-of-the-art system for plasma catalysis and
recycling are high (about 197 GJ t-NH3

−1). Furthermore, the energy cost for recycling scales with
the reciprocal of the single pass conversion. This implies that increasing the conversion by catalyst
optimization and plasma optimization inherently decreases the energy cost of the recycle. An ammonia
concentration of about 1.0 mol. % is required to effectively use the reactor volume for separation,
as will be discussed in Section 3.1.

A target of 40 GJ t-NH3
−1 at 1.0 mol. % ammonia outlet concentration was set for the plasma

reactor (see Section 1.2.1). The lowest energy consumption reported so far is for a pulsed plasma DBD
reactors with an energy consumption of 95 GJ t-NH3

−1 at 0.16 mol. % over a Mg-Ru/Al2O3 catalyst [43].
Thus, an energy consumption enhancement by a factor 2.4 is required, whereas the conversion should
increase by a factor 6.3 to attain feasible operation. Based on trends in thermal catalysis, a rate
enhancement is expected by changing the catalyst from promoted Ru/Al2O3 to promoted Ru/MgO
(see Table 1). It should be noted that the plasma activation of NH3 is an inherent limitation to the
energy efficiency at high conversions, as NH3 is increasingly activated by the plasma with increasing
NH3 concentration.

In order to get an estimate of the best-case scenario (BCS) for plasma-catalytic ammonia synthesis,
we assume the barrier decrease for N2 dissociation equals the energy input for plasma-catalytic
NH3 synthesis. The decrease in the N2 dissociation barrier over Ru catalysts is about 0.7 eV [38],
which translates to about 4.0 GJ t-NH3

−1 or 1.1 kWh kg−1. From Figure 6, it follows that an
ammonia outlet concentration of 0.35 mol. % is required to attain an energy cost of 40 GJ t-NH3

−1.
For 1.0 mol. % NH3 concentration at the reactor outlet, the total energy consumption for the plasma
reactor (BCS) and the recycling is about 5.0 GJ t-NH3

−1 (see Figure 6).
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Figure 6. Energy cost of the recycle as a function of the ammonia concentration at the reaction outlet,
as well as the best reported value for plasma catalysis, and a best-case scenario for plasma catalysis.
The energy cost of recycling is estimated based on values reported by Smith et al. [67]. The best reported
value for plasma catalysis is found in the data of Kim et al. [43].

3. Ammonia Separation and Conceptual Process Design

An evaluation of various process alternatives for ammonia separation in a plasma-catalytic
ammonia synthesis process is presented. The cost of such a small-scale process is compared to a
small-scale Haber-Bosch synthesis loop. As hydrogen and nitrogen production occur in a similar
manner, this is not discussed here.
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3.1. Separation and Storage

Ammonia is conventionally separated by condensation. However, this does not allow for efficient
and complete separation at low operating pressures, as ammonia has a significant vapor pressure under
ambient conditions (~7 bar). Therefore, an alternative method for ammonia separation is required for
ammonia synthesis under mild pressures [67]. Solid sorbents can be used for this purpose and a wide
range of materials has been tested [66].

Among these sorbents, metal halides (e.g., metal chlorides and metal bromides) and zeolites are
most promising (see Table 2). A benefit of metal halides over zeolites is the higher ammonia density of
the storage material. Furthermore, ammonia can be separated at elevated temperatures using metal
halides, minimizing the temperature difference between the plasma reactor and the separation step.
This saves on the cost of heat integration between the plasma reactor (probably 200–300 ◦C) and the
separation step, i.e., 150–250 ◦C for metal halides, as compared to 20–100 ◦C for zeolites. For low
conversion systems such as plasma-catalytic ammonia synthesis, the investment cost of the recycle
compressor and heat exchanger generally dominate the investment cost for the synthesis loop [67].
Therefore, metal halides are the preferred option in this case. However, it should be noted that
zeolites are of interest if plasma-catalytic ammonia synthesis at room temperature is developed with
plasma-activated N2 as the relevant species.

Table 2. Comparison of ammonia separation technologies. Based on references [16,80–83]. * The energy
consumption increases to 20–25 GJ t-NH3

−1 at 20 bar [67].

Condensation Metal Halides Zeolites

Separation temperature (◦C) −20 to 30 150–250 20–100
Desorption temperature (◦C) - 350–400 200–250
Pressure (bar) 100–450 10–30 10–30
Energy consumption (GJ t-NH3

−1) 3–5 * 6–11 8
Ammonia at outlet (mol. %) 2–5 0.1–0.3 0.1–0.3
Ammonia capacity (wt. %) 100 5–30 5–15
Ammonia density (kg m−3) 680 100–600 30–90
Chemical stability - Low/Medium High
Technology readiness level (TRL) 9 4–5 4–5

Ammonia can be stored inside the metal halides. Metal halides absorb ammonia via diffusion of
ammonia into the lattice, forming an ammine complex. For instance, ammonia can be absorbed into
CaCl2 and MgCl2, forming Ca(NH3)XCl2 and Mg(NH3)XCl2. Ammonia leakage risks are reduced as
compared to liquefied ammonia, as the ammonia vapor pressure in equilibrium with the ammonia
loaded metal halides is significantly lower as compared to the vapor pressure of pure ammonia [84].
This decreases safety risks substantially. Thus, ammonia is stored inside metal halides, until ammonia
is required for combustion in for instance a fuel cell or engine [16]. A simplified process scheme of a
plasma-catalytic ammonia synthesis loop is shown in Figure 7. The adsorption-desorption cycle can be
achieved by switching between multiple beds or by using moving bed reactors.
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3.2. Synergy between Plasma Reactor and Ammonia Separation and Storage

As discussed above, synergy may be attained upon matching the operating temperature of the
plasma reactor and the ammonia separator. The plasma reactor can operate at temperatures above
the light-off temperature (typically > 150 ◦C), where a higher temperature implies a higher ammonia
synthesis rate. On the other hand, upon increasing the temperature too much (i.e., above 300 ◦C),
the benefits of plasma catalysis over heterogeneous catalysis without a plasma are negligible.
Some catalysts show substantial thermal activity above 300 ◦C [85–88], which implies that the
use of plasma is not necessary.

Among metal halides, MgCl2 shows suitable absorption-desorption cycles. At an ammonia
partial pressure of 10 kPa and at 200 ◦C, two moles of ammonia can be absorbed in MgCl2, forming
Mg(NH3)2Cl2. Upon increasing the temperature to 300 ◦C, all ammonia can be released again.
As ammonia absorption is determined by the kinetic rate of the surface reaction [89], maximizing
the available MgCl2 surface area is beneficial. Supporting MgCl2 on an inert oxide can increase the
available surface area of MgCl2. Furthermore, nano-pores are formed in the metal halide structure upon
ammonia desorption. Possibly, the mechanical stability can be better maintained upon supporting
MgCl2 on an inert oxide. Higher ammonia absorption capacities are obtained when loading metal
halides on oxide supports [82]. MgCl2/SiO2 (40 wt. % MgCl2) is the best among the tested materials
with an experimental sorbent capacity of about 5 wt. % ammonia at 200 ◦C, whereas the theoretical
maximum is 11 wt. % ammonia.

The operating conditions and the energy consumption for the state-of-the-art plasma reactor and
a best-case scenario (BCS) plasma reactor are listed in Table 3, as well as the operating conditions
for ammonia separation with a MgCl2/SiO2 sorbent. Due to the similar reaction conditions in the
plasma reactor and in the absorption step, heat integration can indeed be minimized. This simplifies
the synthesis loop substantially in case of intermittent operation. From Table 3 it follows that the
main improvement required is the energy consumption in the plasma reactor, as was also discussed
in Section 2.2.2.
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Table 3. Synergy between plasma and ammonia separation and storage. * This includes the energy
consumption for plasma-catalytic ammonia synthesis (PC) and the energy consumption for recycling
(Rec). The energy consumption for recycling is based on the outlet NH3 concentration, based on
interpolation of estimates in [16,67]. The state-of-the-art value for plasma catalysis is based on the
data of Kim et al. [43], while the best-case scenario is based on an energy input of 0.7 eV due to a
decrease in the N2 dissociation barrier over Ru catalysts (see Section 2.2) [38]. The difference between
the operating pressure of the plasma reactor and the separation step is to account for the pressure drop
over the system.

State-of-the-Art Plasma Reactor BCS Plasma Reactor Separation

Type DBD reactor (pulse) DBD reactor (pulse) Solid absorbent
Material Promoted Ru/Al2O3 catalyst More active catalyst MgCl2/SiO2
Reaction temperature (◦C) 300 200 200
Desorption temperature (◦C) - - 300
Operating pressure (bar) 1.5 1.5 1.0
Outlet NH3 concentration (mol. %) 0.16 1.0 0.1
Outlet ammonia pressure (kPa) 1.6 10 0.3
Energy consumption (GJ t-NH3

−1) * 197 (PC:95, Rec:102) 5 (PC:4, Rec:1) 10
Syngas ratio (H2:N2) 1:4 1:4 1:4

3.3. Investment Cost Comparison

Most of the discussion so far has focused on the energy consumption in the ammonia synthesis loop,
as the energy cost is usually the major cost contributor for electricity-driven ammonia synthesis [90].
Given that the energy consumption of small-scale systems is larger, the electricity cost is expected to
be a major cost contributor in small-scale systems as well. However, investment costs can become
substantial cost factors as well. In this section, an estimate is provided on the capital investment
for plasma-catalytic ammonia synthesis as compared to a decentralized Haber-Bosch synthesis loop.
As hydrogen and nitrogen are required for both a small-scale Haber-Bosch process and a plasma-catalytic
ammonia synthesis process, the costs for hydrogen production and nitrogen purification are excluded
in the analysis.

The capital investment for the ammonia synthesis loop scales with a cost-scaling factor of 0.6 [14],
while electrolyzers scale modularly. Thus, the contribution of the ammonia synthesis loop to the
total cost increases upon scale-down. Figure 8 shows a comparison between the capital investment
for the Haber-Bosch synthesis loop, the state-of-the-art plasma-catalytic ammonia synthesis loop,
and a best-case scenario for the plasma-catalytic ammonia synthesis loop. For reference, the capital
investment for a low-temperature, absorbent-enhanced Haber-Bosch synthesis loop is also shown.
The equipment cost for the plasma generator is estimated to be 0.9 € W−1, based on estimates of
van Rooij et al. [91]. The equipment cost of all other components are estimated, based on cost-scaling
relations described in [67].

The investment cost of the state-of-the-art plasma-catalytic ammonia synthesis loop is about ten
times as high as that of the small-scale Haber-Bosch synthesis loop. The main reason for this is the large
recycle, implying a large compressor is required. Furthermore, separation of ammonia is less efficient
at low ammonia concentrations, implying large equipment for ammonia absorption. Even for the
best-case scenario with minimal heat exchange between the reactor and the sorbent, plasma-catalytic
ammonia synthesis is equally expensive as the Haber-Bosch synthesis loop. The high-pressure
Haber-Bosch synthesis loop requires a large feed compressor, as well as substantial heat integration
between ammonia synthesis at 400–500 ◦C and ammonia separation at near-ambient temperature.
On the other hand, the cost of ammonia separation and the recycle compressor are low due to high
ammonia partial pressures and relatively high single pass conversions of about 15%. The best-case
scenario plasma-catalytic synthesis loop operates at low pressures, thereby eliminating the requirement
for a feed compressor. However, the recycle compressor is more expensive, due to low single pass
conversions of about 1%. Furthermore, the low ammonia partial pressure also leads to more expensive
ammonia separation equipment.
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loop at 10 kg t-NH3 d−1 (~10 kW). Estimates for the conventional Haber-Bosch synthesis loop and the
absorbent-enhanced Haber-Bosch synthesis loop are based on [67]. The cost of the plasma reactor is
assumed to be the combination of a conventional reactor and a plasma generator source. A cost-scaling
factor of 0.6 is used for scale-down of equipment. See also Table 3.

4. Plasma-Catalytic Ammonia Synthesis in Perspective

All in all, it can be concluded that plasma-catalytic ammonia synthesis does not provide significant
investment cost advantages over the Haber-Bosch synthesis loop on a small scale (about 10 kW),
even in the best base scenario (see Section 3.3). The energy consumption of the best-case scenario for
plasma-catalytic ammonia synthesis is lower than that of the Haber-Bosch process at 10 kW (see Figure 9).
At larger scale, the Haber-Bosch process is more energy efficient in any case (see Figure 3), implying
plasma-catalytic ammonia synthesis is not a viable alternative.

In the previous sections, the focus was on improvements of plasma-catalytic ammonia synthesis.
However, a wide range of technology is currently being researched as an alternative to the Haber-Bosch
process on a small scale. Electrochemical synthesis, photochemical synthesis, homogeneous catalysis,
and chemical looping approaches have been reported. The estimated state-of-the-art energy consumption
for these technologies is shown in Figure 9. An extensive account on these technologies is given by
Rouwenhorst et al. [66]. Electrochemical ammonia synthesis is often proposed as an alternative to
ammonia synthesis under mild conditions. However, producing significant ammonia concentrations
at a low energy cost has proven to be difficult [92–94]. Even if ammonia is produced at a sufficiently
low energy cost, the conversion levels and separation of ammonia from the electrolyte become key
issues [95]. None of the other technologies can be implemented on a near-term, due to high energy
cost and low ammonia yields obtained [66].

Gradual improvements to the Haber-Bosch process have gained considerable research interest as
well. The current industrial multiple promoted iron catalyst has been developed over the past century
with minor changes in catalyst formulation and optimization of catalyst preparation [96,97]. On the
other hand, activated carbon supported Ru catalysts (Ru/AC) have also been implemented in industry
to a lesser extent [7]. The implementation of Ru/AC has been limited, due to a higher catalyst cost
and a shorter catalyst lifetime than iron-based catalysts. For the industrial iron-based catalysts and
the first generation of Ru-based catalysts (Ru/AC, Ru/Oxide), N2 dissociation is the rate limiting step,
which can be enhanced by the introduction of alkali and alkaline earth promoters [74]. In various cases,
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ruthenium-based catalysts have been replaced by wüstite-based iron catalysts in ammonia converters,
because these catalysts show similar activity [96]. A catalyst that is active at substantially lower
temperatures is required to replace iron-based catalysts. Operation at lower temperatures can minimize
heat loss to the surroundings during a small-scale operation and lower the required energy input.

Over the past years, Ru-based catalysts with substantially improved activity have been
developed by using new support materials, such as electrides, among others [77,85–87,98–105].
The C12A7:e− structure used is an electride, stable at ambient temperature, consisting of a positively
charged framework with the chemical formula [Ca24Al28O64]4+ and four extra-framework electrons,
accommodated in the cages as counter ions [106]. It has been proposed that the N2 dissociation
rate is enhanced on electride supported Ru catalyst, due to a small band gap between the valence
band of the electride and the conduction band of the metal [100]. Furthermore, the hydrogen
poisoning effect commonly encountered for Ru catalysts is thought to be suppressed [99]. For these
catalysts, hydrogenation over the catalyst is the rate-limiting step, rather than the N2 dissociation
step [101]. These catalysts show activity at 200–250 ◦C, similar to that of industrial Fe-based catalysts
at 350–400 ◦C [85]. These highly active Ru-based catalysts are clearly a competitive alternative to a
plasma reactor, as these catalysts are sufficiently active to decrease the reactor temperature similarly
to plasma-catalytic ammonia synthesis. Furthermore, plasma catalysis can only be employed at a
high energy efficiency (i.e., a low energy consumption), when ammonia conversions are low, as the
plasma also activates the product and we expect NH3 concentrations should be limited to about
1.0 mol. % in order to limit plasma activation of the product. This problem is not present for the new
generation of Ru-based catalysts, which no longer have the N2 dissociation as the rate-limiting step.
Solid sorbents such as metal halides can also be combined with the new generation of Ru-based catalysts,
thereby allowing to decrease the pressure of the ammonia synthesis loop to that of the hydrogen
production and nitrogen purification pressure (about 7 bar) [16]. This is coined the absorbent-enhanced
Haber-Bosch process.Catalysts 2020, 10, x FOR PEER REVIEW 14 of 20 
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Figure 9. Estimated energy consumption of state-of-the-art small-scale, electrolysis-based Haber-Bosch,
plasma catalysis (also best-case scenario), absorbent-enhanced Haber-Bosch, single pass process
absorbent-enhanced process, and electrochemical ammonia synthesis. Estimates based on [16,67,107,108].
For plasma catalysis, the energy consumption for gas recycling and ammonia separation is based on
estimates in for low pressure (1.5 bar), low conversion (0.4 mol. % NH3) systems with solid sorbents
(see also Section 3.1) [16,67]. * For electrochemical ammonia synthesis, only the energy consumption
of ammonia production is included and the energy cost of ammonia separation and recycling is not
included. TRL stands for technology readiness level. The TRL levels here apply for the complete
system. TRL 1 is the basic idea, while TRL 9 is a commercial system. For more details, see ref. [68].
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Even for the best-case scenario (BCS) for plasma catalysis with a 5.8 times improvement in energy
consumption for plasma catalysis (see Section 2.2.2), the energy consumption for a plasma-catalytic
ammonia synthesis process is higher than for a low temperature synthesis, absorbent-enhanced
Haber-Bosch process (see Figure 9). Furthermore, the capital investment for a plasma-catalytic process
is expected to be higher than for the absorbent-enhanced Haber-Bosch process, because of the required
larger heat exchanger and larger recycle compressor, due to a lower single pass conversion [67].
For reference, the electrolysis-based Haber-Bosch process at 10 MW has a power-to-ammonia efficiency
of 52% (LHV), while the best-case scenario for plasma catalysis has a power-to-ammonia efficiency of
39% (LHV). The current energy consumption for plasma-catalytic ammonia synthesis is about 240 GJ
t-NH3

−1, leading to a power-to-ammonia efficiency as low as 8% (LHV).

5. Outlook

Plasma-catalytic ammonia synthesis does not appear to be a feasible alternative to long-term
energy storage in NH3. In case of N2 activation for ammonia synthesis, alternative technologies under
development for ammonia synthesis appear to be more feasible in the short term and in the long
term (see Section 4). Ammonia synthesis from hydrogen and nitrogen is an exothermic reaction and
an exergonic reaction and under most conditions [73], implying plasma activation is, in principle,
not desirable.

However, plasma catalysis is an interesting alternative to electrifying in the chemical industry,
due to the ability of plasma to activate strong chemical bonds such as CH4, CO2 and N2 [28].
For instance, the bond dissociation energy of the N≡N is 9.79 eV, while electrons in DBD reactors
typically have energies in the range 2–4 eV. The total barrier for CH4 activation can be decreased upon
vibrational excitation [109], thereby increasing the dissociative sticking probability [110]. Furthermore,
plasma-assisted technologies have a fast response to electricity load variations. The plasma may
provide very localized heating, thus limiting the heat requirement for the reactor. This can be beneficial
for endergonic reactions. Lastly, plasma activation has the potential to provide process intensification.
For instance, N2 activation with a plasma can be of interest for the direct synthesis of NOX [111,112],
thereby eliminating the ammonia synthesis step altogether. As discussed in this article, the product
outlet concentration should typically be above 1.0 mol. %, in order to limit the recycle size and to allow
for efficient product separation.
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